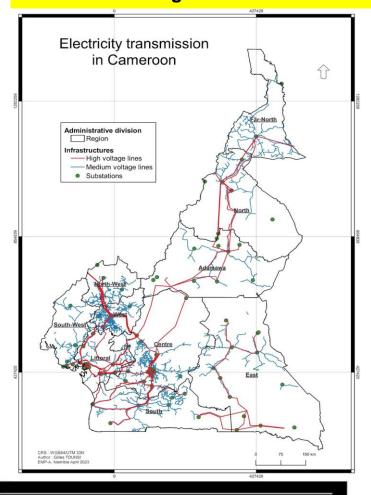


UNIVERSITY OF CAMBRIDGE

What is the least-cost solution for electricity access in Cameroon?

Gilles TOUNSI KAMDEM


ORCID: 0009-0001-1077-4857 Email: gt@limko.cm

Energy Modelling Platform for Africa (EMP-A) 2023
Windhoek, Namibia

OnSSET

Open Source Spatial Electrification Tool

A GIS based tool developed to identify the least-cost electrification option(s) between seven alternative configurations

Context and Challenge

- Cameroon National Electrification Rate: 63%
 Urban: 93% Rural: 23% (World Bank)
- Electricity generation dominated by hydroelectricity (76%) for 72.2% of the total capacity generation (SEforALL)
- Global Horizontal Irradiation 6 kwh/m²/day in the Far North (GlobalSolarAtlas)

- Access remains the big challenge
- Average electricity consumption per:
 - Household: 287 kwh/year
 - Capita: 91 kwh/year (Tier 2) (World Bank)
- Only 20% of the population would actually have continuous access to electricity. (of 27 millions/2015)
- Overall mismatch between supply and demand
- Irregularity of supplies due to the low water period
- The mix of technologies is an opportunity

Timeline target for electrification rate in Cameroon per region

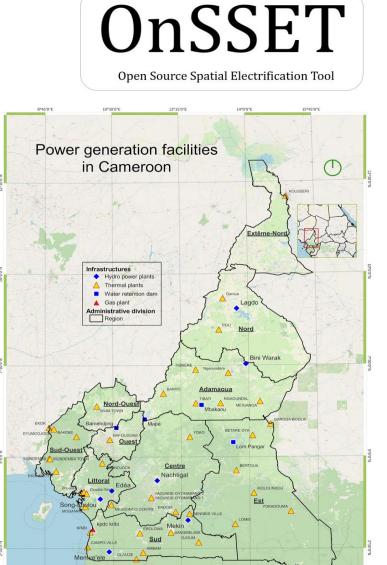
Source: Adapted from Rural Electrification Master Plan for Cameroon (PDER)

Addressing the challenge...

- Based on the GEP-OnSSET model :
 - GIS energy planning can determine the area with high demand target by analyzing GDP and Poverty indices
 - The Far North of the country is the preferred target
 - Higher GHI irradiation is experience in the Far North

What technologies are favorable to access the electricity?

Electricity production is divided into the following technologies


- Hydroelectric Power plants
- Thermal Power Plants
- Solar power plants
- Wind

Solar power plant Source : World Bank Madagascar

Kribi Thermal power plant Source : Africa Energy Portal

Nachtigal Dam
Source: World Bank Cameroon

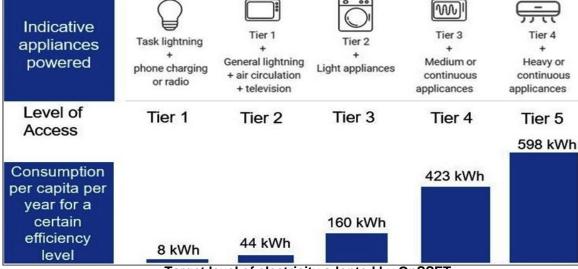
Source : K&Y Energy Advisors

Scenario & Parameters

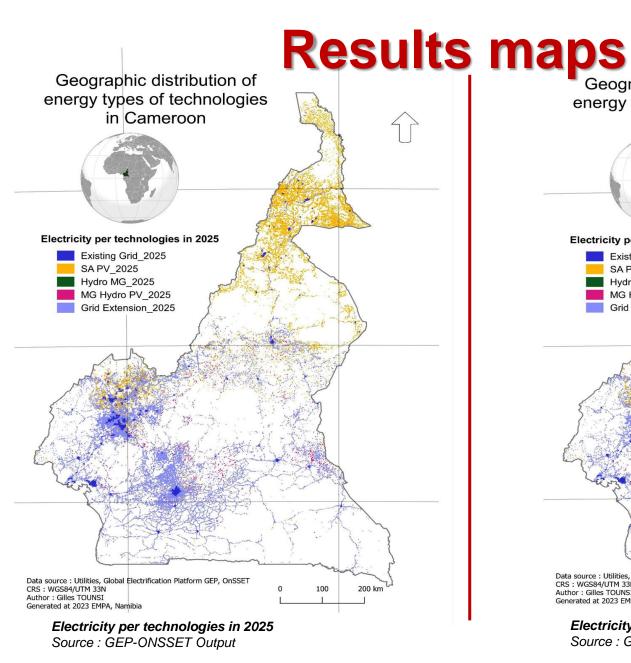


One Scenario based on the inputs

Baseline inputs


Analysis

- Electricity per technologies
- Technologies per region
- Technologies costs for Off-Grid



Population (2020): 25.216 millions

tier per kwh/household/year

Target level of electricity adopted by OnSSET Source: Global Tracking Framework, 2015

OnSSET Geographic distribution of Open Source Spatial Electrification Tool energy types of technologies in Cameroon Electricity per technologies in 2030 Existing Grid_2030 SA PV_2030 Hydro MG 2030 MG Hydro PV 2030 Grid Extension 2030 Data source: Utilities, Global Electrification Platform GEP, OnSSET CRS: WGS84/UTM 33N 100 200 km Author: Gilles TOUNSI Generated at 2023 EMPA, Namibia

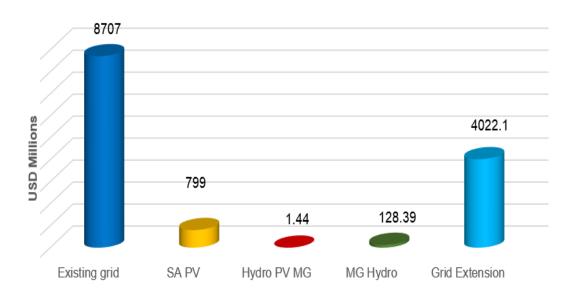
Electricity per technologies in 2030

Source : GEP ONSSET Output

Results graphs

Open Source Spatial Electrification Tool

Total Capacity in 2030 6.066 MW


Total investments in 2030 13.659 Millions USD

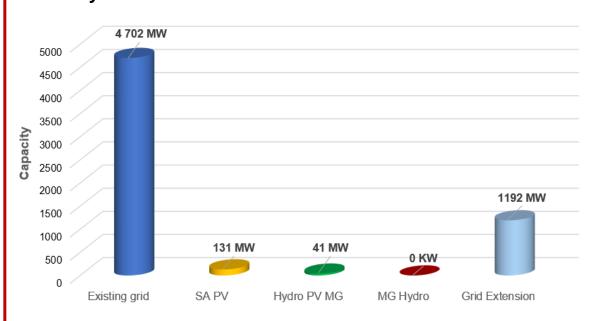
Existing grid: USD 8707.9 M

SA PV: USD 799 M

Hydro PV MG: USD 1.44 M MG Hydro: USD 128.39 M

Grid Extension: USD 4022.11 M

Technologies Investments cost in 2030


Source : GEP-OnSSET Output

Existing grid: 4702 MW
Grid Extension: 1192 MW

SA PV: 131 MW

Hydro PV MG: 41 MW

MG Hydro: 0 MW

Capacity generated in 2030 Source : GEP-OnSSET Output

Results Table (1000s of people)

Open Source Spatial Electrification Tool

egion	Grid densification	Solar-home systems	Mini-grids	Grid extension
Adamaoua	306.0	31.0	NaN	307.0
Centre	2884.0	39.0	NaN	465.0
Est	204.0	20.0	0.0	246.0
Extrême - Nord	798.0	164.0	8.0	574.0
Littoral	2688.0	10.0	1.0	203.0
Nord	689.0	81.0	0.0	385.0
Nord - Ouest	678.0	49.0	0.0	428.0
Ouest	812.0	31.0	NaN	420.0
Sud	169.0	13.0	1.0	160.0
Sud - Ouest	634.0	19.0	5.0	292.0

Table : Technologies per regionSource : Python GEP-ONSSET Generator

Conclusions and Policy Insights

- Least costs technologies depend to the environment.
- Cameroon Far North region has a potential for GHI irradiation.
- Investments cost are planned with off-grid Solar Stand Alone Systems.

Note: Cameroon does not recognize the off-grid technologies such as Solar Home System and Mini Grid PV as a lever of electrification rate

- Customs duties exemptions & VAT exemptions.
- Advocacy with NREA (including the financial support UE/WB....)
- Off-grid technologies represent an opportunity to increase the national rate with the inclusion NGO's, Minigrid & off-grid developers, civil society....
- Credit loans should be available for SME's involving in the field of energy, particularly renewable energy.

Future Work

- Start the capacity building of Global Electrification Platform (Comoros)
- My Goal: continue to share the practice of the tool with Gov., Decision-makers and the private sector

References

- Climate Compatible Growth (CCG).(2022). OnSSET/The Global Electrification Platform. https://www.open.edu/openlearncreate/course/view.php?id=8393
- GEP The Global Electrification Platform.(2021). https://gep-user-guide.readthedocs.io/en/latest/
- OnSSET The Open Source Spatial Electrification Tool.(2021). Geospatial Electrification Planning OnSSET Teaching Kit.
 https://github.com/OnSSET/teaching-kit
- PDER Plan Directeur d'Electrification Rurale du Cameroun.(2016). Rapport final. Financement Banque Mondiale.
 https://drive.google.com/file/d/1iJwFlppTTktwQLvYixQjsQIIrH0hA9ib/view
- Sahlberg, A., Korkovelos, A., Khavari, B., Monwe, O., Mentis, D., & Arderne, C. (2020). Welcome to OnSSET documentation!
 https://onsset.readthedocs.io/en/latest/index.html

UNIVERSITY OF CAMBRIDGE

What is the least cost solution for electricity access in Cameroon?

THANK YOU!

Gilles TOUNSI KAMDEM

ORCID: 0009-0001-1077-4857 Email: gt@limko.cm

Energy Modelling Platform for Africa (EMP-A) 2023 Windhoek, Namibia

OnSSET

Open Source Spatial Electrification Tool

A GIS based tool developed to identify the least-cost electrification option(s) between seven alternative configurations

Source: K&Y Energy Advisors